Share

Publications

Publications

The publications of the UMA members are listed in the unit's HAL collection: HAL collection of UMA

The publications appearing in the HAL open archive since 2025 are listed below by year.

2014

  • Quasi-local transmission conditions for non-overlapping domain decomposition methods for the Helmholtz equation
    • Collino Francis
    • Joly Patrick
    • Lecouvez Matthieu
    • Stupfel Bruno
    Comptes Rendus. Physique, Académie des sciences (Paris), 2014, 15 (5), pp.403-414. In this article, we present new transmission conditions for a domain decomposition method, applied to a scattering problem. Unlike other conditions used in the literature, the conditions developed here are non-local, but can be written as an integral operator (as a Riesz potential) on the interface between two domains. This operator, of order View the MathML source12, leads to an exponential convergence of the domain decomposition algorithm. A spectral analysis of the influence of the operator on simple cases is presented, as well as some numerical results and comparisons. (10.1016/j.crhy.2014.04.005)
    DOI : 10.1016/j.crhy.2014.04.005
  • Wave propagation through penetrable scatterers in a waveguide and through a penetrable gratings
    • Maurel Agnès
    • Mercier Jean-François
    • Félix Simon
    Journal of the Acoustical Society of America, Acoustical Society of America, 2014, 135 (1), pp.165-174. A multimodal method based on the admittance matrix is used to analyze wave propagation through scatterers of arbitrary shape. Two cases are considered: a waveguide containing scatterers, and the scattering of a plane wave at oblique incidence to an infinite periodic row of scatterers. In both cases, the problem reduces to a system of two sets of first-order differential equations for the modal components of the wavefield, similar to the system obtained in the rigorous coupled wave analysis. The system can be solved numerically using the admittance matrix, which leads to a stable numerical method, the basic properties of which are discussed (convergence, reciprocity, energy conservation). Alternatively, the admittance matrix can be used to get analytical results in the weak scattering approximation. This is done using the plane wave approximation, leading to a generalized version of the Webster equation and using a perturbative method to analyze the Wood anomalies and Fano resonances. (10.1121/1.4836075)
    DOI : 10.1121/1.4836075
  • Mathematical modelling of multi conductor cables
    • Beck Geoffrey
    • Imperiale Sebastien
    • Joly Patrick
    Discrete and Continuous Dynamical Systems - Series S, American Institute of Mathematical Sciences, 2014, pp.26. This paper proposes a formal justification of simplified 1D models for the propagation of electromagnetic waves in thin non-homogeneous lossy conductor cables. Our approach consists in deriving these models from an asymptotic analysis of 3D Maxwell’s equations. In essence, we extend and complete previous results to the multi-wires case. (10.3934/dcdss.2015.8.521)
    DOI : 10.3934/dcdss.2015.8.521