Share

Publications

Publications

The publications of the UMA members are listed in the unit's HAL collection: HAL collection of UMA

The publications appearing in the HAL open archive since 2025 are listed below by year.

2000

  • Modèles asymptotiques en ferromagnétisme: couches minces et homogénéisation
    • Haddar Houssem
    , 2000. No abstract available
  • Diffraction par un obstacle situé dans un réseau de plaques semi-infinies
    • Bonnet-Ben Dhia Anne-Sophie
    • Ramdani Karim
    • Tillequin Axel
    Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 2000, 331 (12), pp.977-982. L'objet de cette Note est de proposer une méthode pour l'étude de la diffraction par un réseau de plaques horizontales semi-infinies localement perturbé par un obstacle. La méthode proposée couple une équation variationnelle posée dans un domaine borné entourant l'obstacle et une équation pseudo-différentielle écrite sur la droite verticale située à l'extrémité des plaques. Après avoir donné une formulation variationnelle du problème, on montre que celui-ci relève de l'alternative de Fredholm, en dehors des fréquences de résonance du réseau. (10.1016/S0764-4442(00)01762-6)
    DOI : 10.1016/S0764-4442(00)01762-6
  • Formulations variationnelles pour la diffraction des ondes électromagnétiques
    • Hazard Christophe
    • Lenoir Marc
    , 2000.
  • Un résultat de fermeture pour les équations de Maxwell en géométrie axisymétrique
    • Ciarlet Patrick
    • Filonov Nikolai
    • Labrunie Simon
    Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 2000, 331 (4), pp.293-298. On étudie l'équivalence des normes H1 et pour des champs de vecteurs vérifiant une condition aux limites électrique ou magnétique, dans un ouvert axisymétrique. On utilise deux méthodes, l'une fondée sur des outils élémentaires, l'autre sur les résultats connus pour le Laplacien. Ce résultat, valable pour presque tous les domaines axisymétriques, est utilisé pour la résolution numérique des équations de Maxwell. (10.1016/S0764-4442(00)01617-7)
    DOI : 10.1016/S0764-4442(00)01617-7
  • Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains: the Singular Complement Method
    • Assous Franck
    • Ciarlet Patrick
    • Segré Jacques
    Journal of Computational Physics, Elsevier, 2000, 161 (1), pp.218-249. In this paper, we present a method to solve numerically the time-dependent Maxwell equations in nonsmooth and nonconvex domains. Indeed, the solution is not of regularity H1 (in space) in general. Moreover, the space of H1-regular fields is not dense in the space of solutions. Thus an H1-conforming Finite Element Method can fail, even with mesh refinement. The situation is different than in the case of the Laplace problem or of the Lamé system, for which mesh refinement or the addition of conforming singular functions work. To cope with this difficulty, the Singular Complement Method is introduced. This method consists of adding some well-chosen test functions. These functions are derived from the singular solutions of the Laplace problem. Also, the SCM preserves the interesting features of the original method: easiness of implementation, low memory requirements, small cost in terms of the CPU time. To ascertain its validity, some concrete problems are solved numerically. (10.1006/jcph.2000.6499)
    DOI : 10.1006/jcph.2000.6499
  • Analytical Results for Distributions Functions and Gravitational Potential for 3D and 2D Stellar Systems
    • Perez Jérôme
    , 2000. After general considerations on the properties of distribution functions (DF) for steady state stellar systems, I will talk about the choice of the DF. In the 3D gravitational context, I deal with a very old Chandrasekhar's conjecture (1942): What are the properties of a stellar system which DF depends only on the mean particle energy E (The inverse but unphysical problem is trivial), and I will use a rigourous theorem from Gidas, Ni and Nirenberg, 1981 to answer. In the 2D gravitational context, I will present a recent work (Aly and Perez, 1999) in which we obtain DF and gravitational potential for an unbounded system from thermodynamical consideration. An application of such a potential to orbits in thin stellars disks will be presented.
  • Résolution des équations de Maxwell instationnaires avec charges dans un domaine singulier bidimensionnel
    • Assous Franck
    • Ciarlet Patrick
    • Garcia Emmanuelle
    Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 2000, 330, pp.391-396. Dans [3] et [2], nous avons considéré la résolution numérique des équations de Maxwell instationnaires en l'absence de charges dans un domaine bidimensionnel non convexe, à l'aide d'une méthode appelée la méthode du complément singulier, pour laquelle les champs calculés sont continus. Nous en présentons ici une extension qui permet de traiter efficacement le cas des équations avec charges, avec un faible surcoût numérique. Ceci fait de la MCS une méthode de calcul bien adaptée à la résolution des équations couplées de Vlasov-Maxwell. (10.1016/S0764-4442(00)00159-2)
    DOI : 10.1016/S0764-4442(00)00159-2
  • Perturbation of low-frequency underwater acoustics by gravity waves
    • Champy-Doutreleau Isabelle
    • Euvrard Daniel
    • Hazard Christophe
    Journal of Fluid Mechanics, Cambridge University Press (CUP), 2000, 411, pp.305-324.
  • Convergence of Hamilton-Jacobi equations for sequences of optimal control problems
    • Briani Ariela
    Communications in Applied Analysis, 2000, 4, pp.227-244,.
  • Fictitious Domains, Mixed Finite Elements and Perfectly Matched Layers for 2D Elastic Wave Propagation
    • Bécache Eliane
    • Joly Patrick
    • Tsogka Chrysoula
    , 2000. We design a new and efficient numerical method for the modelization of elastic wave propagation in domains with complex topographies. The first specificity is the use of the fictitious domain method to take into account the boundary condition on the topography: the elastodynamic problem is extended in a domain with simple geometry, which permits the use of regular meshes. The free boundary condition is enforced introducing a Lagrange multiplier, defined on the boundary and discretized with a non uniform boundary mesh. This leads us to consider the first order velocity-stress formulation of the equations and particular mixed finite elements. These elements have three main non-standard properties: they take into account the symmetry of the stress tensor, they are compatible with mass lumping techniques and lead to explicit time discretisation schemes, and they can be coupled with the Perfectly Matched Layer technique for the modeling of unbounded domains. Our method permits to model wave propagation in complex media such as anisotropic, heterogeneous media with complex topographi- es or/and with cracks, as it will be illustratred by several numerical experiments.
  • Electromagnetic waves in laminar ferromagnetic medium: the homogenized problem
    • Haddar Houssem
    • Joly Patrick
    , 2000, pp.578--582.
  • Mathematical Analysis of a Method to Compute Guided Waves in Integrated Optics
    • Pedreira D. Gómez
    • Joly Patrick
    , 2000. In this article, we propose a new method to solve an eigenvalue problem (posed in $\B$) arising from the computation of guided modes in integrated optics electromagnetic waveguides under the weak guiding assumption. We consider an open stratified waveguide translationally invariant in the infinite propagation direction. Its cross-section is also supposed to be an unbounded and stratified medium where an appropiate perturbation of the refraction index has been introduced to ensure the existence of guided modes. The method presented here appears as a combination of analytical methods which take into account the unbounded and stratified character of the propagation medium and numerical computations which can be reduced to a neighborhood of the perturbation. In this report, we give a complete description of the method, present its main mathematical properties and achieve the convergence analysis with respect to the various approximation parameters.
  • Mathematical analysis of conductive and superconductive transmission lines
    • Bonnet-Ben Dhia Anne-Sophie
    • Ramdani Karim
    SIAM Journal on Applied Mathematics, Society for Industrial and Applied Mathematics, 2000, 60 (6), pp.2087-2113. This paper is concerned with a mathematical study of guided propagation in the microstrip transmission lines used in microelectronics. In the first part, the case of a zero-thickness perfectly conducting strip is considered. Using a regularized formulation of Maxwell's equations, it is shown that finding guided modes amounts to the spectral analysis of a noncompact family of self-adjoint operators. The existence of guided modes is then proved thanks to the min-max principle. In the second part, we deal with the case of a zero-thickness superconducting strip. An asymptotic model derived from London's equation is studied and the existence of guided modes is deduced from the case of the perfectly conducting strip. Copyright © 2000 Society for Industrial and Applied Mathematics (10.1137/S0036139999352420)
    DOI : 10.1137/S0036139999352420
  • Effective boundary conditions for thin ferromagnetic layers: the one-dimensional model
    • Haddar Houssem
    • Joly Patrick
    SIAM Journal on Applied Mathematics, Society for Industrial and Applied Mathematics, 2000, 61 (4), pp.1386--1417 (electronic). (10.1137/S0036139998346361)
    DOI : 10.1137/S0036139998346361
  • Construction d'une méthode de raffinement de maillage spatio-temporelle stable pour les équations de Maxwell
    • Collino Francis
    • Fouquet Thierry
    • Joly Patrick
    , 2000. L'objet de ce rapport est de présenter la construction et l'analyse d'une méthode de raffinement de maillage spatio-temporel pour les équations de Maxwell à 3 dimensions d'espace. L'idée est d'introduire à l'interface des deux maillages un courant. Ce courant est déterminé implicitement par la condition de raccord des composantes tangentielles des deux champs électriques. Ce problème peut s'écrire sous la forme d'un problème d'évolution variationnel. On discrétise ce problème de facon à garantir la stabilité par la conservation d'une énergie discrète. On applique cette méthode générale à la FDTD et pour un raffinement spatio-temporel 1-2. On obtient un schéma stable sous la CFL usuelle.
  • Numerical Resolution of a Multiphasic Optimal Mass Transport Problem
    • Benamou Jean-David
    • Brenier Yann
    • Guittet Kevin
    , 2000. We extend the classical $L^2$ Monge-Kantorovich Problem in the multiphasic context. An augmented lagrangian numerical method used in the monophasic case is adapted to this problem, its efficiency being checked with various methods.