Share

Publications

Publications

The publications of the UMA members are listed in the unit's HAL collection: HAL collection of UMA

The publications appearing in the HAL open archive since 2025 are listed below by year.

2014

  • Extraordinary transmission through subwavelength dielectric gratings in the microwave range
    • Ahmed Akarid
    • Ourir Abdelwaheb
    • Maurel Agnes
    • Félix Simon
    • Mercier Jean-François
    Optics Letters, Optical Society of America - OSA Publishing, 2014, 39 (13), pp.3752-3755. We address the problem of the transmission through subwavelength dielectric gratings. Following Maurel et al. [Phys. Rev. B 88, 115416 (2013)], the problem is reduced to the transmission by an homogeneous slab, either anisotropic (for transverse magnetic waves, TM) or isotropic (for transverse electric waves, TE), and an explicit expression of the transmission coefficient is derived. The optimum angle realizing perfect impedance matching (Brewster angle) is shown to depend on the contrasts of the dielectric layers with respect to the air. Besides, we show that the Fabry–Perot resonances may be dependent on the incident angle, in addition to the dependence on the frequency. These facts depart from the case of metallic gratings usually considered; they are confirmed experimentally both for TE and TM waves in the microwave regime. (10.1364/OL.39.003752)
    DOI : 10.1364/OL.39.003752
  • Asymptotic behaviour of codes in rank metric over finite fields
    • Loidreau P
    Designs, Codes and Cryptography, Springer Verlag, 2014, 71 (1), pp.105-118. In this paper, we rst recall some basic facts about rank metric. We then derive an asymptotic equivalent of the minimum rank distance of codes that reach the rank metric GilbertVarshamov bound. We then derive an asymptotic equivalent of the average minimum rank distance of random codes. We show that random codes reach GV bound. Finally, we show that optimal codes in rank metric have a packing density which is bounded by functions depending only on the base eld and the minimum distance and show the potential interest in cryptographic applications. (10.1007/s10623-012-9716-0)
    DOI : 10.1007/s10623-012-9716-0
  • On the absence of trapped modes in locally perturbed open waveguides
    • Hazard Christophe
    IMA Journal of Applied Mathematics, Oxford University Press (OUP), 2014, pp.14. This paper presents a new approach for proving that the presence of a bounded defect in a uniform open waveguide cannot produce trapped modes, contrary to the case of a closed waveguide. The originality of the proof lies in the fact that it relies on a modal decomposition. It shows in particular that the absence of trapped modes results from a strong connection between the various modal components of the field. The case of the three-dimensional scalar wave equation is considered. (10.1093/imamat/hxu046)
    DOI : 10.1093/imamat/hxu046
  • Hausdorff measures and dimensions in non equiregular sub-Riemannian manifolds
    • Ghezzi Roberta
    • Jean Frédéric
    , 2014, 5, pp.201-218. (10.1007/978-3-319-02132-4_13)
    DOI : 10.1007/978-3-319-02132-4_13
  • Finite Element Heterogeneous Multiscale Method for the Wave Equation: Long-Time Effects
    • Abdulle Assyr
    • Grote Marcus J.
    • Stohrer Christian
    Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, Society for Industrial and Applied Mathematics, 2014, 12 (3), pp.1230–1257. A new finite element heterogeneous multiscale method (FE-HMM) is proposed for the numerical solution of the wave equation over long times in a rapidly varying medium. Our new FE-HMM-L method captures not only the short-time behavior of the wave field, well described by classical homogenization theory, but also more subtle long-time dispersive effects, both at a computational cost independent of the microscale. Optimal error estimates in the energy norm and the $L^2$-norm are proved over finite time intervals, which imply convergence to the solution from classical homogenization theory when both the macro- and the microscale are refined simultaneously. Numerical experiments illustrate the usefulness of the FE-HMM-L method and corroborate the theory. (10.1137/13094195X)
    DOI : 10.1137/13094195X
  • Quadro-quadric cremona transformations in low dimensions via the JC-correspondence
    • Pirio Luc
    • Russo Francesco
    Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2014, 64 (1), pp.71-111. We apply the results of arXiv:1109.3573 to study quadro-quadric Cremona transformations in low-dimensional projective spaces. In particular we describe new very simple families of such birational maps and obtain complete and explicit classifications in dimension four and five. (10.5802/aif.2839)
    DOI : 10.5802/aif.2839
  • Mathematical modeling of a discontinuous Myers condition
    • Lunéville Éric
    • Mercier Jean-François
    ESAIM: Mathematical Modelling and Numerical Analysis, Société de Mathématiques Appliquées et Industrielles (SMAI) / EDP, 2014, 48 (5), pp.1529-1555. (10.1051/m2an/2014008)
    DOI : 10.1051/m2an/2014008
  • Generalized method for retrieving effective parameters of anisotropic metamaterials
    • Mercier Jean-François
    • Castanié Aurore
    • Félix Simon
    • Maurel Agnes
    Optics Express, Optical Society of America - OSA Publishing, 2014, 22 (24), pp.29977-29953. Electromagnetic or acoustic metamaterials can be described in terms of equivalent effective, in general anisotropic, media and several techniques exist to determine the effective permeability and permittivity (or effective mass density and bulk modulus in the context of acoustics). Among these techniques, retrieval methods use the measured reflection and transmission coefficients (or scattering coefficients) for waves incident on a metamaterial slab containing few unit cells. Until now, anisotropic effective slabs have been considered in the literature but they are limited to the case where one of the axes of anisotropy is aligned with the slab interface. We propose an extension to arbitrary orientations of the principal axes of anisotropy and oblique incidence. The retrieval method is illustrated in the electromagnetic case for layered media, and in the acoustic case for array of tilted elliptical particles. (10.1364/OE.22.029937)
    DOI : 10.1364/OE.22.029937
  • Local transformation leading to an efficient Fourier modal method for perfectly conducting gratings
    • Félix Simon
    • Maurel Agnes
    • Mercier Jean-François
    Journal of the Optical Society of America, Optical Society of America, 2014, 31 (10), pp.2249-2255. We present an efficient Fourier modal method for wave scattering by perfectly conducting gratings (in the two polarizations). The method uses a geometrical transformation, similar to the one used in the C-method, that transforms the grating surface into a flat surface, thus avoiding to question the Rayleigh hypothesis; also, the transformation only affects a bounded inner region that naturally matches the outer region; this allows applying a simple criterion to select the ingoing and outgoing waves. The method is shown to satisfy reciprocity and energy conservation, and it has an exponential rate of convergence for regular groove shapes. Besides, it is shown that the size of the inner region, where the solution is computed, can be reduced to the groove depth, that is, to the minimal computation domain. (10.1364/JOSAA.31.002249)
    DOI : 10.1364/JOSAA.31.002249
  • Edge Element Methods for Maxwell's Equations with Strong Convergence for Gauss' Laws
    • Ciarlet Patrick
    • Wu Haijun
    • Zou Jun
    SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2014, 52 (2), pp.779-807. In this paper we propose and investigate some edge element approximations for three Maxwell systems in three dimensions: the stationary Maxwell equations, the time-harmonic Maxwell equations and the time-dependent Maxwell equations. These approximations have three novel features. First, the resulting discrete edge element systems can be solved by some existing preconditioned solvers with optimal convergence rate independent of finite element meshes, including the stationary Maxwell equations. Second, they ensure the optimal strong convergence of the Gauss' laws in some appropriate norm, in addition to the standard optimal convergence in energy-norm, under the general weak regularity assumptions that hold for both convex and non-convex polyhedral domains and for the discontinuous coefficients that may have large jumps across the interfaces between different media. Finally, no saddle-point discrete systems are needed to solve for the stationary Maxwell equations, unlike most existing edge element schemes. (10.1137/120899856)
    DOI : 10.1137/120899856
  • Wood's anomalies for arrays of dielectric scatterers
    • Maurel Agnès
    • Félix Simon
    • Mercier Jean-François
    • Ourir Abdelwaheb
    • Djeffal Zine Eddine
    Journal of the European Optical Society : Rapid publications, European Optical Society, 2014, 9, pp.14001. The Rayleigh Wood anomalies refer to an unexpected repartition of the electromagnetic energy between the several interference orders of the light emerging from a grating. Since Hessel and Oliner (Appl. Opt. 4, 1275-1297 (1965)), several studies have been dedicated to this problem, focusing mainly on the case of metallic gratings. In this paper, we derive explicit expressions of the reflection coefficients in the case of dielectric gratings using a perturbative approach. This is done in a multimodal description of the field combined with the use of the admittance matrix, analog to the so-called electromagnetic impedance. Comparisons with direct numerical calculations show a good agreement with our analytical prediction. (10.2971/jeos.2014.14001)
    DOI : 10.2971/jeos.2014.14001
  • Optimal control of leukemic cell population dynamics
    • Dupuis Xavier
    Mathematical Modelling of Natural Phenomena, EDP Sciences, 2014, 9 (1), pp.4-26. We are interested in optimizing the co-administration of two drugs for some acute myeloid leukemias (AML), and we are looking for in vitro protocols as a first step. This issue can be formulated as an optimal control problem. The dynamics of leukemic cell populations in culture is given by age-structured partial differential equations, which can be reduced to a system of delay differential equations, and where the controls represent the action of the drugs. The objective function relies on eigenelements of the uncontrolled model and on general relative entropy, with the idea to maximize the efficiency of the protocols. The constraints take into account the toxicity of the drugs. We present in this paper the modeling aspects, as well as theoretical and numerical results on the optimal control problem that we get. (10.1051/mmnp/20149102)
    DOI : 10.1051/mmnp/20149102
  • A new Fast Multipole formulation for the elastodynamic half-space Green's tensor
    • Chaillat Stéphanie
    • Bonnet Marc
    Journal of Computational Physics, Elsevier, 2014, 258, pp.787-808. In this article, a version of the frequency-domain elastodynamic Fast Multipole-Boundary Element Method (FM-BEM) for semi-infinite media, based on the half-space Green's tensor (and hence avoiding any discretization of the planar traction-free surface), is presented. The half-space Green's tensor is often used (in non-multipole form until now) for computing elastic wave propagation in the context of soil-structure interaction, with applications to seismology or civil engineering. However, unlike the full-space Green's tensor, the elastodynamic half-space Green's tensor cannot be expressed using derivatives of the Helmholtz fundamental solution. As a result, multipole expansions of that tensor cannot be obtained directly from known expansions, and are instead derived here by means of a partial Fourier transform with respect to the spatial coordinates parallel to the free surface. The obtained formulation critically requires an efficient quadrature for the Fourier integral, whose integrand is both singular and oscillatory. Under these conditions, classical Gaussian quadratures would perform poorly, fail or require a large number of points. Instead, a version custom-tailored for the present needs of a methodology proposed by Rokhlin and coauthors, which generates generalized Gaussian quadrature rules for specific types of integrals, has been implemented. The accuracy and efficiency of the proposed formulation is demonstrated through numerical experiments on single-layer elastodynamic potentials involving up to about $N=6 10^5$ degrees of freedom. In particular, a complexity significantly lower than that of the non-multipole version is shown to be achieved. (10.1016/j.jcp.2013.11.010)
    DOI : 10.1016/j.jcp.2013.11.010
  • 2-Stage Robust MILP with continuous recourse variables
    • Billionnet Alain
    • Costa Marie-Christine
    • Poirion Pierre-Louis
    Discrete Applied Mathematics, Elsevier, 2014, 170, pp.21-32. We solve a linear robust problem with mixed-integer first-stage variables and continuous second stage variables. We consider column wise uncertainty. We first focus on a problem with right hand-side uncertainty which satisfies a "full recourse property" and a specific definition of the uncertainty. We propose a solution based on a generation constraint algorithm. Then we give some generalizations of the approach: for left-hand side uncertainty and for uncertainty sets defined by a polytope. Finally we solve the problem when the "full recourse property" is not satisfied. (10.1016/j.dam.2014.01.017)
    DOI : 10.1016/j.dam.2014.01.017
  • Complexity in control-affine systems
    • Jean Frédéric
    • Prandi Dario
    , 2014. We will consider affine-control systems, i.e., systems in the form _ q(t) = f0(q(t)) + Xm i=1 ui (t)fi (q(t)) Here, the point q belongs to a smooth manifold M the fi 's are smooth vector fields on M u 2 L1([0;T];Rm) This type of system appears in many applications Mechanical systems Quantum control Microswimmers (Tucsnak, Alouges) Neuro-geometry of vision (Mumfor, Petitot)
  • Optimal feedback control of undamped wave equations by solving a HJB equation
    • Kröner Axel
    • Kunisch Karl
    • Zidani Hasnaa
    ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2014, 21 (2), pp.442 - 464. An optimal fi nite-time horizon feedback control problem for (semi linear) wave equations is presented. The feedback law can be derived from the dynamic programming principle and requires to solve the evolutionary Hamilton-Jacobi-Bellman (HJB) equation. Classical discretization methods based on nite elements lead to approximated problems governed by ODEs in high dimensional space which makes infeasible the numerical resolution by HJB approach. In the present paper, an approximation based on spectral elements is used to discretize the wave equation. The e ffect of noise is considered and numerical simulations are presented to show the relevance of the approach. (10.1051/cocv/2014033)
    DOI : 10.1051/cocv/2014033
  • The covariation for Banach space valued processes and applications
    • Di Girolami Cristina
    • Fabbri Giorgio
    • Russo Francesco
    Metrika, Springer Verlag, 2014, 77 (1), pp.51–104. This article focuses on a new concept of quadratic variation for processes taking values in a Banach space $B$ and a corresponding covariation. This is more general than the classical one of Métivier and Pellaumail. Those notions are associated with some subspace $\chi$ of the dual of the projective tensor product of $B$ with itself. We also introduce the notion of a convolution type process, which is a natural generalization of the Itô process and the concept of $\bar \nu_0$-semimartingale, which is a natural extension of the classical notion of semimartingale. The framework is the stochastic calculus via regularization in Banach spaces. Two main applications are mentioned: one related to Clark-Ocone formula for finite quadratic variation processes; the second one concerns the probabilistic representation of a Hilbert valued partial differential equation of Kolmogorov type. (10.1007/s00184-013-0472-6)
    DOI : 10.1007/s00184-013-0472-6
  • The "exterior approach" to solve the inverse obstacle problem for the Stokes system
    • Bourgeois Laurent
    • Dardé Jérémi
    Inverse Problems and Imaging, AIMS American Institute of Mathematical Sciences, 2014, pp.Pages: 23 - 51. We apply an "exterior approach" based on the coupling of a method of quasi-reversibility and of a level set method in order to recover a fixed obstacle immersed in a Stokes flow from boundary measurements. Concerning the method of quasi-reversibility, two new mixed formulations are introduced in order to solve the ill-posed Cauchy problems for the Stokes system by using some classical conforming infite elements. We provide some proofs for the convergence of the quasi-reversibility methods on the one hand and of the level set method on the other hand. Some numerical experiments in 2D show the effciency of the two mixed formulations and of the exterior approach based on one of them. (10.3934/ipi.2014.8.23)
    DOI : 10.3934/ipi.2014.8.23
  • The finite element method in solid mechanics
    • Bonnet Marc
    • Frangi Attilio
    • Rey Christian
    , 2014, pp.365. The book focuses on topics that are at the core of the Finite Element Method (FEM) for the mechanics of deformable solids and structures.Its main objective is to provide the reader, who is assumed to be familiar with standard continuum solid mechanics, with a clear grasp of the essentials, sufficient background for reading and exploiting the research literature on computational solid mechanics, and a working knowledge of the main implementational issues of the FEM.This book arises from a course taught since 2004 to last-year students of Ecole Polytechnique (France). It is intended for Master and PhD students, as well as scientists and engineers looking for a rigorous introduction to FEM theory and programming for linear and non-linear analyses in solid mechanics.As a distinguishing feature, in addition to sections devoted to theory and concepts presented in general terms, each chapter also features other sections (interspersed with the former) devoted to detailed description of specific features (e.g. the construction of a specific finite element), annotated Matlab code and/or numerical examples produced with it, or worked-out analytical examples.
  • Study of a Model Equation in Detonation Theory
    • Faria Luiz
    • Kasimov Aslan
    • Rosales Rodolfo
    SIAM Journal on Applied Mathematics, Society for Industrial and Applied Mathematics, 2014, 74 (2), pp.547-570. (10.1137/130938232)
    DOI : 10.1137/130938232
  • Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning
    • Jean Frédéric
    , 2014. Nonholonomic systems are control systems which depend linearly on the control. Their underlying geometry is the sub-Riemannian geometry, which plays for these systems the same role as Euclidean geometry does for linear systems. In particular the usual notions of approximations at the first order, that are essential for control purposes, have to be defined in terms of this geometry. The aim of these notes is to present these notions of approximation and their application to the motion planning problem for nonholonomic systems. The notes are divided into three chapters and two appendices. In Chapter 1 we introduce the basic definitions on nonholonomic systems and sub-Riemannian geometry, and give the main result on controllability, namely the Chow-Rashevsky Theorem. Chapter 2 provides a detailed exposition of the notions of first-order approximation, including nonholonomic orders, privileged coordinates, nilpotent approximations, and distance estimates such as the Ball-Box Theorem. As an application we show how these notions allow us to describe the tangent structure to a Carnot-Carathéodory space (the metric space defined by a sub-Riemannian distance). The chapter ends with the presentation of desingularization procedures, that are necessary to recover uniformity in approximations and distance estimates. Chapter 3 is devoted to the motion planning problem for nonholonomic systems. We show in particular how to apply the tools from sub-Riemannian geometry in order to give solutions to this problem, first in the case where the system is nilpotent, and then in the general case. An overview of the existing methods for nonholonomic motion planning concludes this chapter. Finally, we present some results on composition of flows in connection with the Campbell-Hausdorff formula in Appendix A, and some complements on the different systems of privileged coordinates in Appendix B. (10.1007/978-3-319-08690-3)
    DOI : 10.1007/978-3-319-08690-3
  • GKW representation theorem and linear BSDEs under restricted information. An application to risk-minimization.
    • Ceci Claudia
    • Cretarola Alessandra
    • Russo Francesco
    Stochastics and Dynamics, World Scientific Publishing, 2014, 14 (2), pp.1350019. In this paper we provide Galtchouk-Kunita-Watanabe representation results in the case where there are restrictions on the available information. This allows to prove existence and uniqueness for linear backward stochastic differential equations driven by a general càdlàg martingale under partial information. Furthermore, we discuss an application to risk-minimization where we extend the results of Föllmer and Sondermann (1986) to the partial information framework and we show how our result fits in the approach of Schweizer (1994). (10.1142/S0219493713500196)
    DOI : 10.1142/S0219493713500196
  • Mathematical modelling of multi conductor cables
    • Beck Geoffrey
    • Imperiale Sebastien
    • Joly Patrick
    Discrete and Continuous Dynamical Systems - Series S, American Institute of Mathematical Sciences, 2014, pp.26. This paper proposes a formal justification of simplified 1D models for the propagation of electromagnetic waves in thin non-homogeneous lossy conductor cables. Our approach consists in deriving these models from an asymptotic analysis of 3D Maxwell’s equations. In essence, we extend and complete previous results to the multi-wires case. (10.3934/dcdss.2015.8.521)
    DOI : 10.3934/dcdss.2015.8.521
  • Numerical modeling of nonlinear acoustic waves in a tube connected with Helmholtz resonators
    • Lombard Bruno
    • Mercier Jean-François
    Journal of Computational Physics, Elsevier, 2014, 259, pp.421-443. Acoustic wave propagation in a one-dimensional waveguide connected with Helmholtz resonators is studied numerically. Finite amplitude waves and viscous boundary layers are considered. The model consists of two coupled evolution equations: a nonlinear PDE describing nonlinear acoustic waves, and a linear ODE describing the oscillations in the Helmholtz resonators. The thermal and viscous losses in the tube and in the necks of the resonators are modeled by fractional derivatives. A diffusive representation is followed: the convolution kernels are replaced by a finite number of memory variables that satisfy local ordinary differential equations. A splitting method is then applied to the evolution equations: their propagative part is solved using a standard TVD scheme for hyperbolic equations, whereas their diffusive part is solved exactly. Various strategies are examined to compute the coefficients of the diffusive representation; finally, an optimization method is preferred to the usual quadrature rules. The numerical model is validated by comparisons with exact solutions. The properties of the full nonlinear solutions are investigated numerically. In particular, the existence of acoustic solitary waves is confirmed. (10.1016/j.jcp.2013.11.036)
    DOI : 10.1016/j.jcp.2013.11.036
  • High-order asymptotic expansion for the acoustics in viscous gases close to rigid walls
    • Schmidt Kersten
    • Anastasia Thöns-Zueva
    • Joly Patrick
    Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2014, pp.1823. (10.1142/S0218202514500080)
    DOI : 10.1142/S0218202514500080