Partager

Publications

Publications

Les publications des membres de l'UMA sont répertoriées dans la collection HAL de l'unité : Collection HAL de l'UMA

Sont listées ci-dessous, par année, les publications figurant dans l'archive ouverte HAL depuis 2025.

2012

  • Giens 2011
    • Bonnet Marc
    • Cornuault Christian
    • Pagano Stéphane
    , 2012.
  • Application of the multi-level time-harmonic fast multipole BEM to 3-D visco-elastodynamics
    • Grasso Eva
    • Chaillat Stéphanie
    • Bonnet Marc
    • Semblat Jean-François
    Engineering Analysis with Boundary Elements, Elsevier, 2012, 36, pp.744-758. This article extends previous work by the authors on the single- and multi-domain time-harmonic elastodynamic multi-level fast multipole BEM formulations to the case of weakly dissipative viscoelastic media. The underlying boundary integral equation and fast multipole formulations are formally identical to that of elastodynamics, except that the wavenumbers are complex-valued due to attenuation. Attention is focused on evaluating the multipole decomposition of the viscoelastodynamic fundamental solution. A damping-dependent modification of the selection rule for the multipole truncation parameter, required by the presence of complex wavenumbers, is proposed. It is empirically adjusted so as to maintain a constant accuracy over the damping range of interest in the approximation of the fundamental solution, and validated on numerical tests focusing on the evaluation of the latter. The proposed modification is then assessed on 3D single-region and multi-region visco-elastodynamic examples for which exact solutions are known. Finally, the multi-region formulation is applied to the problem of a wave propagating in a semi-infinite medium with a lossy semi-spherical inclusion (seismic wave in alluvial basin). These examples involve problem sizes of up to about $3\,10^{5}$ boundary unknowns. (10.1016/j.enganabound.2011.11.015)
    DOI : 10.1016/j.enganabound.2011.11.015
  • Optimal control models of the goal-oriented human locomotion
    • Chitour Yacine
    • Jean Frédéric
    • Mason Paolo
    SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2012, 50 (1), pp.147-170. In recent papers it has been suggested that human locomotion may be modeled as an inverse optimal control problem. In this paradigm, the trajectories are assumed to be solutions of an optimal control problem that has to be determined. We discuss the modeling of both the dynamical system and the cost to be minimized, and we analyze the corresponding optimal synthesis. The main results describe the asymptotic behavior of the optimal trajectories as the target point goes to infinity. (10.1137/100799344)
    DOI : 10.1137/100799344
  • Mathematical and numerical modelling of piezoelectric sensors
    • Imperiale Sébastien
    • Joly Patrick
    ESAIM: Mathematical Modelling and Numerical Analysis, Société de Mathématiques Appliquées et Industrielles (SMAI) / EDP, 2012. The present work aims at proposing a rigorous analysis of the mathematical and numerical modelling of ultrasonic piezoelectric sensors. This includes the well-posedness of the final model, the rigorous justification of the underlying approximation and the design and analysis of numerical methods. More precisely, we first justify mathematically the classical quasi-static approximation that reduces the electric unknowns to a scalar electric potential. We next justify the reduction of the computation of this electric potential to the piezoelectric domains only. Particular attention is devoted to the different boundary conditions used to model the emission and reception regimes of the sensor. Finally, an energy preserving finite element / finite difference numerical scheme is developed; its stability is analyzed and numerical results are presented.
  • T-coercivity: Application to the discretization of Helmholtz-like problems
    • Ciarlet Patrick
    Computers & Mathematics with Applications, Elsevier, 2012, 64 (1), pp.22-34. To solve variational indefinite problems, a celebrated tool is the Banach-Ne?as-Babuka theory, which relies on the inf-sup condition. Here, we choose an alternate theory, T-coercivity. This theory relies on explicit inf-sup operators, both at the continuous and discrete levels. It is applied to solve Helmholtz-like problems in acoustics and electromagnetics. We provide simple proofs to solve the exact and discrete problems, and to show convergence under fairly general assumptions. We also establish sharp estimates on the convergence rates. © 2012 Elsevier Ltd. All rights reserved. (10.1016/j.camwa.2012.02.034)
    DOI : 10.1016/j.camwa.2012.02.034