Partager

Publications

Publications

Les publications des membres de l'UMA sont répertoriées dans la collection HAL de l'unité : Collection HAL de l'UMA

Sont listées ci-dessous, par année, les publications figurant dans l'archive ouverte HAL depuis 2025.

2007

  • Well-posedness of the Drude-Born-Fedorov model for chiral media
    • Ciarlet Patrick
    • Legendre Guillaume
    Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2007, 17 (3), pp.461-484. We consider a chiral medium in a bounded domain, enclosed in a perfectly conducting material. We solve the transient Maxwell equations in this domain, when the medium is modeled by the Drude-Born-Fedorov constitutive equations. The input data is located on the boundary, in the form of given surface current and surface charge densities. It is proved that, except for a countable set of chirality admittance values, the problem is mathematically well-posed. This result holds for domains with non-smooth boundaries. © World Scientific Publishing Company. (10.1142/s0218202507001991)
    DOI : 10.1142/s0218202507001991
  • Characterization of the kernel of the operator CURL CURL
    • Ciarlet Philippe G.
    • Ciarlet Patrick
    • Geymonat Giuseppe
    • Krasucki Françoise
    Comptes Rendus. Mathématique, Académie des sciences (Paris), 2007, 344 (série I), pp.305-308. In a simply-connected domain Ω in R3, the kernel of the operator CURLCURL acting on symmetric matrix fields from L2s (Ω) to H−2 s (Ω) coincides with the space of linearized strain tensor fields. For not simply-connected domains, Volterra has characterized this kernel for smooth fields. Here we extend this result for domains with a Lipschitz-continuous boundary for fields in L2s (Ω). To cite this article: P.G. Ciarlet et al., C. R. Acad. Sci. Paris, Ser. I 344 (2007). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. (10.1016/j.crma.2007.01.001)
    DOI : 10.1016/j.crma.2007.01.001
  • Resonances of an elastic plate in a compressible confined fluid
    • Bonnet-Ben Dhia Anne-Sophie
    • Mercier Jean-François
    Quarterly Journal of Mechanics and Applied Mathematics, Oxford University Press (OUP), 2007, 60 (4), pp.397-421. We present a theoretical study of the resonances of a fluid-structure problem, an elastic plate placed in a duct in the presence of a compressible fluid. The case of a rigid plate has been largely studied. Acoustic resonances are then associated to resonant modes trapped by the plate. Due to the elasticity of the plate, we need to solve a quadratic eigenvalue problem in which the resonance frequencies k solve the equations γ(k) = k2, where γ are the eigenvalues of a self-adjoint operator of the form A + kB. First, we show how to study the eigenvalues located below the essential spectrum by using the min-max principle. Then, we study the fixed-point equations. We establish sufficient conditions on the characteristics of the plate and of the fluid to ensure the existence of resonances. Such conditions are validated numerically. © The author 2007. Published by Oxford University Press; all rights reserved. (10.1093/qjmam/hbm015)
    DOI : 10.1093/qjmam/hbm015
  • Non-Spurious Spectral Like Element Methods for Maxwell's equations
    • Cohen Gary
    • Duruflé Marc
    Journal of Computational Mathematics -International Edition-, Global Science Press, 2007, pp.282-304. In this paper, we give the state of the art for the so called "mixed spectral elements" for Maxwell's equations. Several families of elements, such as edge elements and discontinuous Galerkin methods (DGM) are presented and discussed. In particular, we show the need of introducing some numerical dissipation terms to avoid spurious modes in these methods. Such terms are classical for DGM but their use for edge element methods is a novel approach described in this paper. Finally, numerical experiments show the fast and low-cost character of these elements.
  • A stability estimate for ill-posed elliptic Cauchy problems in a domain with corners
    • Bourgeois Laurent
    Comptes Rendus. Mathématique, Académie des sciences (Paris), 2007, 345 (7), pp.385-390. We prove in this Note a stability estimate for ill-posed elliptic Cauchy problems in a domain with corners. This result completes an earlier result obtained for a smooth domain. To cite this article: L. Bourgeois, C. R. Acad. Sci. Paris, Ser. I 345 (2007). © 2007 Académie des sciences. (10.1016/j.crma.2007.09.014)
    DOI : 10.1016/j.crma.2007.09.014
  • Locating an obstacle in a 3D finite depth ocean using the convex scattering support
    • Bourgeois Laurent
    • Chambeyron Colin
    • Kusiak Steven
    Journal of Computational and Applied Mathematics, Elsevier, 2007, 204 (2 SPEC. ISS.), pp.387-399. We consider an inverse scattering problem in a 3D homogeneous shallow ocean. Specifically, we describe a simple and efficient inverse method which can compute an approximation of the vertical projection of an immersed obstacle. This reconstruction is obtained from the far-field patterns generated by illuminating the obstacle with a single incident wave at a given fixed frequency. The technique is based on an implementation of the theory of the convex scattering support [S. Kusiak, J. Sylvester, The scattering support, Commun. Pure Appl. Math. (2003) 1525-1548]. A few examples are presented to show the feasibility of the method. © 2006 Elsevier B.V. All rights reserved. (10.1016/j.cam.2006.01.045)
    DOI : 10.1016/j.cam.2006.01.045
  • The singularity expansion method applied to the transient motions of a floating elastic plate
    • Hazard Christophe
    • Loret François
    ESAIM: Mathematical Modelling and Numerical Analysis, Société de Mathématiques Appliquées et Industrielles (SMAI) / EDP, 2007, 41 (5), pp.925-943. In this paper we propose an original approach for the simulation of the time-dependent response of a floating elastic plate using the so-called Singularity Expansion Method. This method consists in computing an asymptotic behaviour for large time obtained by means of the Laplace transform by using the analytic continuation of the resolvent of the problem. This leads to represent the solution as the sum of a discrete superposition of exponentially damped oscillating motions associated to the poles of the analytic continuation called resonances of the system, and a low frequency component associated to a branch point at frequency zero. We present the mathematical analysis of this method for the two-dimensional sea-keeping problem of a thin elastic plate (ice floe, floating runway, ...) and provide some numerical results to illustrate and discuss its efficiency. © EDP Sciences, SMAI 2007. (10.1051/m2an:2007040)
    DOI : 10.1051/m2an:2007040
  • Convergence analysis of the Jacobi-Davidson method applied to a generalized eigenproblem
    • Hechme Grace
    Comptes Rendus. Mathématique, Académie des sciences (Paris), 2007, 345 (5), pp.293-296. In this Note we consider the Jacobi-Davidson method applied to a nonsymmetric generalized eigenproblem. We analyze the convergence behavior of the method when the linear systems involved, known as the correction equations, are solved approximately. Our analysis also exhibits quadratic convergence when the corrections are solved exactly. To cite this article: G. Hechme, C. R. Acad. Sci. Paris, Ser. I 345 (2007). © 2007 Académie des sciences. (10.1016/j.crma.2007.07.003)
    DOI : 10.1016/j.crma.2007.07.003
  • Integrability of Bianchi Universes in scalar tensor theory of gravitation
    • Perez Jérôme
    • Larena Julien
    Classical and Quantum Gravity, IOP Publishing, 2007, 24 (11), pp.2901. In this paper, we develop a method based on the analysis of the Kovalewski exponents to study the integrability of anisotropic and homogeneous Universes. The formalism is developed in scalar-tensor gravity, the general relativistic case appearing as a special case of this larger framework. Then, depending on the rationality of the Kovalewski exponents, the different models, both in the vacuum and in the presence of a barotropic matter fluid, are classified, and their integrability is discussed. (10.1088/0264-9381/24/11/008)
    DOI : 10.1088/0264-9381/24/11/008
  • Spectral theory for an elastic thin plate floating on water of finite depth
    • Hazard Christophe
    • Meylan Michael H.
    SIAM Journal on Applied Mathematics, Society for Industrial and Applied Mathematics, 2007, 68 (3), pp.629-647. The spectral theory for a two-dimensional elastic plate floating on water of finite depth is developed (this reduces to a floating rigid body or a fixed body under certain limits). Two spectral theories are presented based on the first-order and second-order formulations of the problem. The first-order theory is valid only for a massless plate, while the second-order theory applies for a plate with mass. The spectral theory is based on an inner product (different for the first- and second-order formulations) in which the evolution operator is self-adjoint. This allows the time-dependent solution to be expanded in the eigenfunctions of the self-adjoint operator which are nothing more than the single frequency solutions. We present results which show that the solution is the same as those found previously when the water depth is shallow, and show the effect of increasing the water depth and the plate mass. © 2007 Society for Industrial and Applied Mathematics. (10.1137/060665208)
    DOI : 10.1137/060665208
  • Generalized formulations of Maxwell's equations for numerical Vlasov-Maxwell simulations
    • Ciarlet Patrick
    • Barthelmé Régine
    • Sonnendrücker Eric
    Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2007, 17 (5), pp.657--680. (10.1142/S0218202507002066)
    DOI : 10.1142/S0218202507002066
  • Anti-dissipative schemes for advection and application to Hamilton-Jacobi-Bellmann equations
    • Bokanowski Olivier
    • Zidani Hasnaa
    Journal of Scientific Computing, Springer Verlag, 2007, 30 (1), pp.1-33. We propose two new antidiffusive schemes for advection (or linear transport), one of them being a mixture of Roe's Super-Bee scheme and of the "Ultra-Bee" scheme. We show how to apply these schemes to treat time-dependent first order Hamilton-Jacobi-Bellman equations with discontinuous initial data, possibly infinitely-valued. Numerical tests are proposed, in one and two space dimensions, in order to validate the methods. (10.1007/s10915-005-9017-0)
    DOI : 10.1007/s10915-005-9017-0
  • Asymptotic analysis for the solution to the Helmholtz problem in the exterior of a finite thin straight wire
    • Claeys Xavier
    , 2007. In this document we are interested in the solution of the Helmholtz equation with Dirichlet boundary condition in the exterior of a thin elongated body. We suppose that the geometry is well described in ellipsoidal coordinates. We propose an asymptotic analysis of this problem, using matched expansions. This leads to the construction of an approximate field with more explicit expression. The approximate field is composed of the first terms of the asymptotic expansion of the exact solution. Our study also leads to a validation of an acoustic version of the Pocklington's equation.
  • Asymptotic expansion of highly conductive thin sheets
    • Schmidt Kersten
    • Tordeux Sébastien
    , 2007, 7 issue 1, pp.2040011-2040012. (10.1002/pamm.200700278)
    DOI : 10.1002/pamm.200700278
  • Augmented Galerkin Schemes for the Numerical Solution of Scattering by Small Obstacles.
    • Claeys Xavier
    • Collino Francis
    , 2007. Dans le contexte de la propagation des ondes electromagnétiques, nous nous intéressons au problème de diffraction par des fils minces parfaitement conducteurs. Si l'on suppose que leur épaisseur est bien plus petite que la longueur d'onde caractéritique de l'onde incidente, il n'est pas posible de prendre en compte des fils minces sans faire face à un problème de verrouillage numérique. Le modèle de Holland, largement utilisé dans les codes différences finis, fournit une solution pragmatique à ce problème, en modifiant le schéma numérique sur quelques noeuds du maillage avoisinant les fils. Jusqu'à présent ce modèle n'a pas re\c cu de justification théorique solide, et il implique un paramètre appelé l'inductance linéique, qu'il doit être choisi suivant des considértions heuristiques. Nous nous intéressons ici au problème modèle de la diffraction acourtique par un petit obstacle, avec condition de Dirichlet au bord, en deux dimensions dans un milieu homogène. Nous présentons et analysons un schéma numérique qui est compatible avec les méthodes éléments finis standards (sans raffinement de maillage) et ne souffre de verrouillage numérique. Ce schéma mélange des techniques d'analyse asymptotique avec une formulation de type domaine fictif. Suivant les résultats que nous démontrons sur ce schéma, nous aboutissons à une généralisation du modèle de Holland et à un calcul automatique de l'inductance linéique. Notre analyse amène, à notre connaissance, à la première justification théorique de ce type de modèle.
  • Continuous Galerkin methods for solving the time-dependent Maxwell equations in 3D geometries
    • Ciarlet Patrick
    • Jamelot Erell
    Journal of Computational Physics, Elsevier, 2007, 226 (1), pp.1122-1135. A few years ago, Costabel and Dauge proposed a variational setting, which allows one to solve numerically the time-harmonic Maxwell equations in 3D geometries with the help of a continuous approximation of the electromagnetic field. In this paper, we investigate how their framework can be adapted to compute the solution to the time-dependent Maxwell equations. In addition, we propose some extensions, such as the introduction of a mixed variational setting and its discretization, to handle the constraint on the divergence of the field. © 2007 Elsevier Inc. All rights reserved. (10.1016/j.jcp.2007.05.029)
    DOI : 10.1016/j.jcp.2007.05.029