Partager

Publications

Publications

Les publications des membres de l'UMA sont répertoriées dans la collection HAL de l'unité : Collection HAL de l'UMA

Sont listées ci-dessous, par année, les publications figurant dans l'archive ouverte HAL depuis 2025.

1998

  • Quelques résultats sur la régularité en temps des équations de Maxwell instationnaires
    • Assous Franck
    • Ciarlet Patrick
    Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 1998, 327 (8), pp.719-724. Nous considérons la régularité par rapport au temps de la solution des équations de Maxwell instationnaires, dans le vide entouré d'un conducteur parfait et en l'absence de charges. Nous commençons par rappeler les résultats obtenus à partir de la théorie classique dans le cas d'un domaine de calcul à frontière lipschitzienne. Lorsque le domaine est polyédrique, nous étendons ces résultats aux parties régulière et singulière du champ électromagnétique. Enfin, dans le cas d'un domaine polygonal, nous montrons comment améliorer ceux concernant la partie singulière du champ. (10.1016/S0764-4442(98)80158-4)
    DOI : 10.1016/S0764-4442(98)80158-4
  • Diffraction d'ondes acoustiques par un guide semi-infini
    • Cutzach Pierre-Marie
    • Lunéville Éric
    Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, Elsevier, 1998, 326 (9), pp.1151-1154. Nous établissons un résultat d'existence et d'unicité pour un problème de diffraction d'ondes acoustiques par un obstacle borné en présence d'un guide semi-infini. Cette étude repose sur le choix d'une condition de rayonnement adaptée, le calcul d'une fonction de Green par la méthode de Wiener-Hopf et des estimations a priori pour l'unicité. (10.1016/S0764-4442(98)80079-7)
    DOI : 10.1016/S0764-4442(98)80079-7
  • Conditions équivalentes pour des couches minces ferromagnétiques. Etude du problème monodimensionnel
    • Haddar Houssem
    • Joly Patrick
    , 1998. Dans ce rapport, nous nous intéressons au problème général de la diffraction d'une onde électromagnétique par un objet parfaitement conducteur revêtu d'une fine couche ferromagnétique. Ces matériaux sont non linéaires et ont la propriété d'être absorbants. Le but poursuivi est l'obtention de conditions aux limites dites équivalentes pour éviter, pour la simulation numérique, la discrétisation des équations de Maxwell dans la couche ferromagnétique. Nous nous limitons dans ce premier travail au cas d'un modèle simple 1D. Ces conditions sont établies par une méthode formelle, basée sur un changement d'échelle et un développement asymptotique par rapport à l'épaisseur de la couche ferromagnétique. Sur le plan théorique, nous étudions la question fondamentale liée à la stabilité des nouveaux problèmes aux limites. Sur le plan numérique, nous proposons et analysons la stabilité de différents schémas de discrétisation et nous présentons des tests de comparaisons entre les solutions approchées et la solution exacte.
  • Existence, uniqueness and analyticity properties for electromagnetic scattering in a two-layered medium
    • Hazard Christophe
    • Cutzach Pierre-Marie
    Mathematical Methods in the Applied Sciences, Wiley, 1998, 21, pp.433-461.
  • Complexités pour les systèmes non-holonomes
    • Jean Frédéric
    , 1998. Cette these de geometrie sous-riemannienne s'articule en deux parties. Une premiere partie est consacree a l'etude de deux quantites dont on montrera qu'elles sont equivalentes, la complexite de la planification de trajectoires non-holonomes d'une part, et d'autre part la mesure d'entropie des sous-varietes unidimensionnelles. On estime ces quantites en fonction des coordonnees de la tangente a une sous-variete dans une base de l'algebre de lie de controle et du vecteur de croissance. Il apparait en particulier que la dimension de hausdorff peut etre non seulement superieure a la dimension topologique, mais egalement non entiere. On presente de plus une methode de planification de mouvements non-holonomes basee sur un resultat dans les algebres de lie libres : pour tout element p d'une algebre de lie libre l(x 1,, x m), exp(p) peut etre approxime a tout ordre par un produit de facteurs elementaires exp(a ix i). Dans la deuxieme partie de ce memoire, on s'interesse aux proprietes de l'algebre de lie de controle pour des classes de systemes particuliers. On traite d'abord un exemple significatif, le systeme de controle de la voiture a n remorques, pour lequel on determine completement la structure de l'algebre de lie en calculant en chaque point le vecteur de croissance. Enfin on considere les systemes de controle algebriques en dimension 3. On donne pour ces systemes une borne optimale pour le degre de non-holonomie. Ce calcul repose sur une estimation de la multiplicite d'un polynome sur la trajectoire d'un champ de vecteur polynomial que l'on obtient en utilisant une technique d'estimation de multiplicites d'intersections pfaffiennes.
  • Direct Computation of Multi Valued Phase-Space Solutions for Hamilton-Jacobi Equations
    • Benamou Jean-David
    , 1998. A method is presented for the exact and complete resolution of Hamiltonian systems only using the corresponding Hamilton-Jacobi equation (we show that it possible to get the ODE solution from the corresponding PDE).
  • Analyse numérique d'une méthode de raffinement de maillage espace-temps pour l'équation des ondes
    • Collino Francis
    • Fouquet Thierry
    • Joly Patrick
    , 1998. L'objet de ce rapport est d'analyser des raffinements de grille spatio-temporels pour l'équation des ondes 1-D discrétisée par le schéma classique à 5 points. Le raccord entre les grilles est réalisé par interpolati- on temporelle centrée. On montre à l'aide d'expériences numériques et d'une analyse par ondes planes que la précision de ces schémas est d'ordre 1. Dans le cas de deux milieux infinis, on démontre la stabilité sous la conditionCFL usuelle au moyen d'une analyse de Fourier-Laplace. Dans le cas d'une bande raffinée, on démontre que des instabilités fortes peuvent exister sous la condition CFL usuelle. Des expériences numériques laissent supposer que ce résultat négatif s'étend aux équations de Maxwell 1-D et 2-D.
  • Application of the PML Absorbing Layer Model to the Linear Elastodynamic Problem in Anisotropic Heteregeneous Media
    • Collino Francis
    • Tsogka Chrysoula
    , 1998. We present and analyze a perfectly matched absorbing layer model for the velocity-stress formulation of elastodynamics. This layer has the astonishing property of generating no reflection at the interface between the free medium and the artificial absorbing medium. This allows us to obtain very low spurious reflection even with very thin layers. Several experiments show the efficiency and the generality of the model.
  • Eléments finis et condensation de masse pour les équations de Maxwell : le cas 3D
    • Elmkies Alexandre
    • Joly Patrick
    , 1998. Dans ce travail, nous nous proposons de construire de nouveaux espaces d'éléments finis d'arêtes adaptés à la rés olution des équations de Maxwell 3D et permettant de résoudre le problème de la condensation de masse, y compris en milieu anisotrope. Pour cela, nous adoptons la même démarche que celle présentée dans \cite{RR2D} pourle cas 2D. Nous sommes donc amené à enrichir les espaces de Nédélecet à introduir- e certaines composantes comme degrés de liberté supplémentaires. Les schémas obtenus sont alors analysés par l'intermédiaire d'une étude de dispersion numérique en maillage régulier. Dans ce rapport, nous considérons seulement les maillages tétraèdriques.
  • Les équations de Maxwell dans un polyèdre : un résultat de densité
    • Ciarlet Patrick
    • Hazard Christophe
    • Lohrengel Stéphanie
    Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 1998, 326 (11), pp.1305-1310. Dans cette Note, on prouve que, dans un domaine polyédrique Ω de 3, les champs réguliers sont denses dans les sous-espaces de H(rot, div ;Ω) dont les éléments ont soit leur trace tangentielle, soit leur trace normale, dans L2(∂Ω). Pour cela, il est nécessaire de connaître explicitement l'allure des singularités du Laplacien. Ceci devrait permettre de résoudre les équations de Maxwell avec une condition d'impédance sur le bord à l'aide des éléments finis conformes dans H1 (Ω). (10.1016/S0764-4442(98)80184-5)
    DOI : 10.1016/S0764-4442(98)80184-5
  • An asymptotic approach of the scattering of electromagnetic waves by thin ferromagnetic coatings
    • Haddar Houssem
    • Joly Patrick
    , 1998, pp.292--296.
  • Higher-Order Numerical Schemes and Operator Splitting for Solving 3D Paraxial Wave Equations in Heterogeneous Media
    • Bécache Eliane
    • Collino Francis
    • Joly Patrick
    , 1998. We investigate numerical schemes for solving 3D paraxial wave equations that are compatible with the use of splitting methods without losing accuracy. The novelty of these paraxial equations (introduced in \cite{col.jol:2}) compared with classical alternate directions methods is to use more than the two usual cross-line and in-line directions for the splitting. It gives rise to a series of 2D extrapolations in each direction of splitting. Propagation along depth is done with a higher-order method based on a conservative Runge Kutta method. The discretization along the lateral variable is done using higher-order finite difference variational schemes. We present a detailed plane wave analysis in a homogeneous medium that leads to a classification of several particular schemes with respect to the numerical dispersion they generate. The dispersion an= alysis extended to 3D helps chosing the «best» coefficients of the extrapolati= on operators on the dispersion point of view. We conclude with numerical experiments in 2D as well as in 3D homogeneous and heterogeneous media.
  • Multiplicity of Polynomials on Trajectories of Polynomials Vector Fields in C3
    • Gabrielov Andrei
    • Jean Frédéric
    • Risler Jean-Jacques
    Banach Center Publications, 1998, 44 (1), pp.109-121. Let ξ be a polynomial vector field on n with coefficients of degree d and P be a polynomial of degree p. We are interested in bounding the multiplicity of a zero of a restriction of P to a non-singular trajectory of ξ, when P does not vanish identically on this trajectory. Bounds doubly exponential in terms of n are already known ([9,5,10]). In this paper, we prove that, when n=3, there is a bound of the form p + 2 p ( p + d - 1 ) 2 . In Control Theory, such a bound can be used to give an estimate of the degree of nonholonomy for a system of polynomial vector fields (this degree expresses the level of Lie-bracketing needed to generate the tangent space at each point).
  • Guided modes of integrated optical guides. A mathematical study
    • Bonnet-Ben Dhia Anne-Sophie
    • Caloz Gabriel
    • Mahé Fabrice
    IMA Journal of Applied Mathematics, Oxford University Press (OUP), 1998, 60 (3), pp.225-261. A waveguide in integrated optics is defined by its refractive index. The guide is assumed to be invariant in the propagation direction while in the transverse direction it is supposed to be a compact perturbation of an unbounded stratified medium. We are interested in the modes guided by this device, which are waves with a transverse energy confined in a neighbourhood of the perturbation. Our goal is to analyse the existence of such guided modes. Under the assumptions of weak guidance the problem reduces to a two-dimensional eigenvalue problem for a scalar field. The associated operator is unbounded, selfadjoint, and bounded from below. Its spectrum consists of the discrete spectrum corresponding to the guided modes and of the essential spectrum corresponding to the radiation modes. We present existence results of guided modes and an asymptotic study at high frequencies, which shows that contrarily to the case of optical fibers, the number of guided modes can remain bounded. The major tools are the min-max principle and comparison of results between different eigenvalue problems. The originality of the present study lies in the stratified character of the unbounded reference medium. Copyright 1998 (10.1093/imamat/60.3.225)
    DOI : 10.1093/imamat/60.3.225
  • Fils et méthodes d'éléments finis pour les équations de Maxwell. Le modèle de Holland revisité
    • Collino Francis
    • Millot Florence
    , 1998. Notre étude porte sur l'incorporation de fils minces dans les formulations volumiques des équations de Maxwell. Nous construisons un modèle basé sur une approximation quasi-statique du champ électrique au voisinage du fil. Ce modèle correspond à un problème mathématique bien posé car conservant une énergie. Il s' écrit sous la forme d' un problème d' évolution variationnel et se prête donc bien à une discrétisation par éléments finis en espace et différences finies en temps. Nous choisissons des éléments finis et une technique d'assemblage qui redonnent le schéma de Yee en l'absence du fil et proposons deux schémas de discrétisation en temps pour les termes additionnels dus au fil. Le premier redonne le schéma aux différences finies proposé par Holland et qui est très utilisé dans les codes industriels. Notre modèle est donc le cadre mathématique sous-jacent du schéma de Holland. Le second est un schéma original qui présente l' avantage d'être stable sous la condition de stabilité usuelle, c' est à dire indépendamment de la présence ou de la grosseur du fil. Il est donc une alternative intéressante au schéma de Holland qui souffre de problème de stabilité. L' étude est complétée par la détermination de l' inductance artificielle optimale qui est un paramètre clé de la méthode. Une formule explicite est donnée dans le cas d'un fil parallèle aux axes du maillage. Les résultats des expériences numériques confirment nos conclusions théoriques. Signalons pour finir une retombée intéressante par elle-même de notre travail qui est la déterminat- ion du comportement asymptotique de la fonction de Green de l' équation d'Helmholtz bidimensionnelle discrétisée avec un laplacien à cinq points.
  • Resolution of the Maxwell equations in a domain with reentrant corners
    • Assous Franck
    • Ciarlet Patrick
    • Sonnendrücker Eric
    ESAIM: Mathematical Modelling and Numerical Analysis, Société de Mathématiques Appliquées et Industrielles (SMAI) / EDP, 1998, 32 (3), pp.359-389. Lorsque le domaine de calcul est un polygone non convexe, c'est-à-dire avec un ou plusieurs coins rentrantes, nous donnons une décomposition de la solution des équations de Maxwell en une partie régulière et une partie singulière. Nous prouvons que l'espace des parties singulières est engendré par les solutions d'un problème stationnaire simple. La régularité exacte de la solution est déterminée en fonction de l'angle aux coins rentrants. Cette décomposition mathématique permet alors de construire un algorithme de résolution numérique des équations de Maxwell dans un polygone non convexe. Cet article est la suite de la note [3]. Cette méthodologie peut également s'appliquer à l'équation de Helmholtz ou au système de Lamé.
  • Some New Mixed Finite Elements in View of the Numerical Solution of Time Dependent Wave Propagation Problems
    • Bécache Eliane
    • Joly Patrick
    • Tsogka Chrysoula
    , 1998. We present the construction and the analysis of a new family of quadrangular (2D) or cubic (3D) mixed finite elements, leading to an explicit scheme (mass lumping) for the approximation of the acoustic or elastic wave equations, including the case of an anisotropic medium. Non classical error estimates are given for this new element.
  • Domain Decomposition Method for Harmonic Wave Propagation : A General Presentation
    • Collino Francis
    • Ghanemi Souad
    • Joly Patrick
    , 1998. In this paper we give a general presentation of non overlapping domain decomposition methods for harmonic wave propagation models. Our abstract framework lead to concise convergence proofs and contains some recent developments about the use of non local transmission conditions. It also includes applications to acoustic, electromagnetic or elastic waves, as well as the treatment of space discretization.
  • Robust guaranteed cost control of uncertain linear time-delay systems using dynamic output feedback
    • Li Huaizhong
    • Niculescu Silviu-Iulian
    • Dugard Luc
    • Dion Jean-Michel
    Mathematics and Computers in Simulation, Elsevier, 1998, 45 (3-4), pp.349-358. (10.1016/S0378-4754(97)00114-6)
    DOI : 10.1016/S0378-4754(97)00114-6
  • The Optimal Time-Continuous Mass Transport Problem and its Augmented Lagrangian Numerical Resolution
    • Benamou Jean-David
    • Brenier Yann
    , 1998. This paper presents the mass transport problem in its time-continuous formulation and introduces an augmented Lagrangian numerical technique for its resolution.
  • An Original Approach to Mode Converter Optimum Design
    • Lunéville Éric
    • Krieg Jean-Michel
    • Giguet Eric
    IEEE Transactions on Microwave Theory and Techniques, Institute of Electrical and Electronics Engineers, 1998, 46 (1), pp.1-9. An original method of shape optimization has been developed to improve high-power high-frequency transmission lines' performances. This method is based on the coupling coefficients equations, for which general expressions are given. It makes use of numerical methods such as steepest descent associated to adjoint state technique. The results obtained on several types of components demonstrate the pertinence of this method (10.1109/22.654916)
    DOI : 10.1109/22.654916
  • Geometry of nonholonomic systems
    • Jean Frédéric
    • Bellaïche André
    • Risler Jean-Jacques
    , 1998, pp.55-91. (10.1007/BFb0036071)
    DOI : 10.1007/BFb0036071